Anti-Bacterial Effects on Ocular Surface Pathology in Dry Eye Disease *Takenori Inomata*^{1,2}, *Lang Bai*², *Tina Shiang*², *Gerald Pier*³ *and Jing Hua*².

¹Juntendo University Faculty of Medicine, Department of Ophthalmology

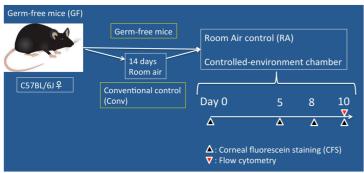
²Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA

³Brigham and Women's Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, MA COI: Takenori Inomata: [F] SEED Co., Ltd,

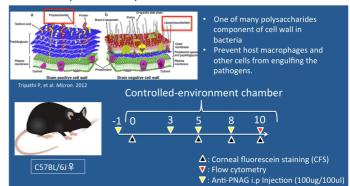
Alcon Japan Ltd, Santen Pharmaceutical Co., Ltd, ROHTO Pharmaceutical Co., Ltd, HÓYA Co., Ltd, WAKAMOTO Co., Ltd, Hogy Medical Co., Ltd, Ribomic Co., Ltd.

Background

- Dry eye disease (DED) is a common ocular surface inflammatory disease affecting > 10 million people in the world
- Immunological mechanisms also play an important role in regulating the ocular surface environment in DED Anti-inflammatory: Regulatory T cells (Tregs)
 - Pro-inflammatory: Th1 (IFN-γ) and Th17 cells induced in inflammation condition of DED
- The ocular surface is continually exposed to the environment and as a result, exposed to different types of microbes. Depending on the bacterial species, either regulatory or effector T cell responses can be generated


However, the immunological behaviors of commensals and pathogens in ocular surface are still not clear

Purpose


To investigate local and systemic effects on immunity and the commensal bacteria on the ocular surface in murine dry eye disease

Methods

Exp.1 Germ free mice

Exp.2 anti-polysaccharide matrix polymer poly-*N*-acetyl glucosamine (Anti-PNAG)

Results

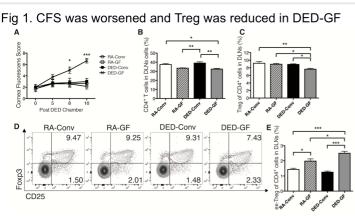


Fig 2. Increased IFN-γ- and IL-17-producing T cells in DED-GF

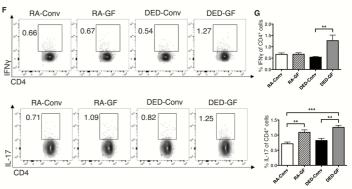


Fig 3. DED with anti-PNAG recovered their CFS

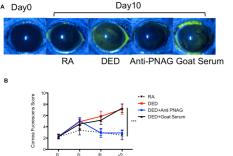


Fig 4. Anti-PNAG injection increased the frequencies of Tregs

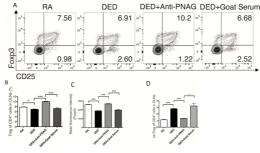
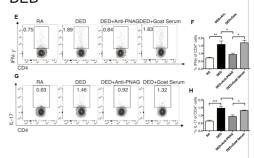



Fig 5. Anti-PNAG injection decreased IFN-γ- and IL-17-producing T cells in DED

Conclusion